Lagrangian Cobordism Functor in Sheaf Theory Uppsala Symplectic Seminar

Wenyuan Li

Northwestern

Definition

A contact manifold (Y,ξ) is a (2n + 1)-dimensional manifold with a maximally non-integrable hyperplane distribution ξ . A Legendrian submanifold $\Lambda \subset (Y,\xi)$ is an *n*-dimensional submanifold such that $T\Lambda \subset \xi$.

Definition

A contact manifold (Y,ξ) is a (2n + 1)-dimensional manifold with a maximally non-integrable hyperplane distribution ξ . A Legendrian submanifold $\Lambda \subset (Y,\xi)$ is an *n*-dimensional submanifold such that $T\Lambda \subset \xi$.

Definition

Let $\Lambda_-, \Lambda_+ \subset (Y, \ker \alpha)$ be Legendrian submanifolds. An exact Lagrangian cobordism L from Λ_- to Λ_+ is an exact Lagrangian $L \subset (\mathbb{R}_t \times Y, d(e^t \alpha))$, such that

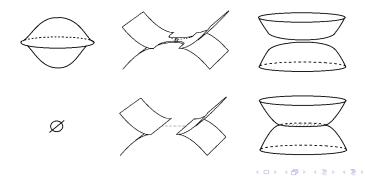
- for $T \gg 0$, $L \cap (-\infty, -T) \times Y = (-\infty, -T) \times \Lambda_-$;
- for $T \gg 0$, $L \cap (T, +\infty) \times Y = (T, +\infty) \times \Lambda_+$;

• the primitive f_L such that $df_L = e^t \alpha$ is a constant on $(-\infty, -T) \times \Lambda_-$ and on $(T, +\infty) \times \Lambda_+$.

A (10) A (10)

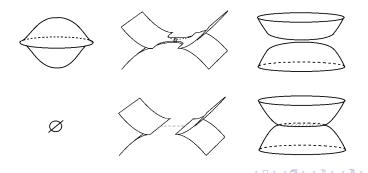
Legendrians and Lagrangian cobordisms

• A Lagrangian cobordism from the empty set to a Legendrian is called a Lagrangian filling.



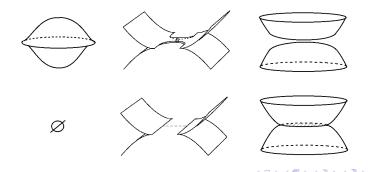
Legendrians and Lagrangian cobordisms

- A Lagrangian cobordism from the empty set to a Legendrian is called a Lagrangian filling.
- There is a Lagrangian disk filling (0-handle cobordism) of the Legendrian unknotted sphere.



Legendrians and Lagrangian cobordisms

- A Lagrangian cobordism from the empty set to a Legendrian is called a Lagrangian filling.
- There is a Lagrangian disk filling (0-handle cobordism) of the Legendrian unknotted sphere.
- There is a Lagrangian k-handle cobordism 0 ≤ k ≤ dim Λ − 1 (Dimitroglou Rizell).



 The Legendrian contact homology A(Λ) is a dg algebra generated by words of Reeb chords on the Legendrian Λ, whose differential counts pseudo-holomorphic curves in the symplectization R_t × Y with boundary on R_t × Λ (with one positive end and arbitrary negative ends).

- The Legendrian contact homology A(Λ) is a dg algebra generated by words of Reeb chords on the Legendrian Λ, whose differential counts pseudo-holomorphic curves in the symplectization R_t × Y with boundary on R_t × Λ (with one positive end and arbitrary negative ends).
- Given an exact Lagrangian cobordism L from Λ₋ to Λ₊, there is a dg algebra map (Ekholm, Ekholm-Honda-Kalman)

$$\Phi_L^*:\mathcal{A}(\Lambda_+)\to \mathcal{A}(\Lambda_-).$$

- The Legendrian contact homology A(Λ) is a dg algebra generated by words of Reeb chords on the Legendrian Λ, whose differential counts pseudo-holomorphic curves in the symplectization R_t × Y with boundary on R_t × Λ (with one positive end and arbitrary negative ends).
- Given an exact Lagrangian cobordism L from Λ₋ to Λ₊, there is a dg algebra map (Ekholm, Ekholm-Honda-Kalman)

$$\Phi^*_L : \mathcal{A}(\Lambda_+) \to \mathcal{A}(\Lambda_-).$$

- The Legendrian contact homology A(Λ) is a dg algebra generated by words of Reeb chords on the Legendrian Λ, whose differential counts pseudo-holomorphic curves in the symplectization R_t × Y with boundary on R_t × Λ (with one positive end and arbitrary negative ends).
- Given an exact Lagrangian cobordism L from Λ₋ to Λ₊, there is a dg algebra map (Ekholm, Ekholm-Honda-Kalman)

$$\Phi^*_L : \mathcal{A}(\Lambda_+) \to \mathcal{A}(\Lambda_-).$$

- Then a Lagrangian cobordism L from Λ_{-} to Λ_{+} should induce a map

$$\Phi_{L}^{*}:\mathcal{A}_{\mathcal{C}_{-*}(\Omega_{*}\Lambda_{+})}(\Lambda_{+})\to\mathcal{A}_{\mathcal{C}_{-*}(\Omega_{*}\Lambda_{-})}(\Lambda_{-})\otimes_{\mathcal{C}_{-*}(\Omega_{*}\Lambda_{-})}\mathcal{C}_{-*}(\Omega_{*}L).$$

▲□ → ▲ □ → ▲ □ → □

 Given A(Λ) or A_{C-*(Ω*Λ)}(Λ), an important invariant one can consider is augmentations, i.e. dg algebra maps to k.

- Given A(Λ) or A_{C-*(Ω*Λ)}(Λ), an important invariant one can consider is augmentations, i.e. dg algebra maps to k.
- Given a Lagrangian cobordism L from Λ₋ to Λ₊ and an augmentation
 ϵ₋ : *A*(Λ₋) → k, one can get an augmentation
 ϵ₊ = *ϵ*₋ ◦ Φ^{*}_L : *A*(Λ₊) → k. We then expect a map between the
 set/category of augmentations

$$\Phi_L: \mathcal{A}\textit{ug}_{-}(\Lambda_{-}) \to \mathcal{A}\textit{ug}_{-}(\Lambda_{+}).$$

過 ト イ ヨ ト イ ヨ ト

- Given A(Λ) or A_{C-*(Ω*Λ)}(Λ), an important invariant one can consider is augmentations, i.e. dg algebra maps to k.
- Given a Lagrangian cobordism L from Λ₋ to Λ₊ and an augmentation
 ϵ₋ : *A*(Λ₋) → k, one can get an augmentation
 ϵ₊ = *ϵ*₋ ◦ Φ^{*}_L : *A*(Λ₊) → k. We then expect a map between the
 set/category of augmentations

$$\Phi_L: \mathcal{A}\textit{ug}_{-}(\Lambda_{-}) \to \mathcal{A}\textit{ug}_{-}(\Lambda_{+}).$$

 Consider A_{C-*(Ω*Λ)}(Λ). Given an augmentation on Λ₋ being
 ε₋ : A_{C-*(Ω*Λ)}(Λ₋) → k, to get an augmentation on Λ₊ one needs
 the data δ : C_{-*}(Ω*L) → k (which is a rank 1 local system on L)
 which agrees with ε₋ on C_{-*}(Ω*Λ₋).

- Given A(Λ) or A_{C-*(Ω*Λ)}(Λ), an important invariant one can consider is augmentations, i.e. dg algebra maps to k.
- Given a Lagrangian cobordism L from Λ₋ to Λ₊ and an augmentation
 ϵ₋ : *A*(Λ₋) → k, one can get an augmentation
 ϵ₊ = *ϵ*₋ ◦ Φ^{*}_L : *A*(Λ₊) → k. We then expect a map between the
 set/category of augmentations

$$\Phi_L: \mathcal{A}ug_{-}(\Lambda_{-}) \to \mathcal{A}ug_{-}(\Lambda_{+}).$$

- Consider A_{C-*(Ω*Λ)}(Λ). Given an augmentation on Λ₋ being

 ϵ₋ : A_{C-*(Ω*Λ)}(Λ₋) → k, to get an augmentation on Λ₊ one needs the data δ : C_{-*}(Ω*L) → k (which is a rank 1 local system on L) which agrees with ϵ₋ on C_{-*}(Ω*Λ₋).
- Therefore a Lagrangian cobordism L from Λ₋ to Λ₊ should induce a map between the set/category of augmentations

$$\Phi_L : \mathcal{A}ug_+(\Lambda_-) \times_{Loc^1(\Lambda_-)} Loc^1(L) \rightarrow \mathcal{A}ug_+(\Lambda_+).$$

(本語) (本語) (本語) (二語

 For a sheaf *F* on X, its singular support SS[∞](*F*) ⊂ T^{*,∞}X encodes the points and codirections where locally the (derived) sections of the sheaf fails to propagate.

- For a sheaf *F* on X, its singular support SS[∞](*F*) ⊂ T^{*,∞}X encodes the points and codirections where locally the (derived) sections of the sheaf fails to propagate.
- More precisely, a covector at a point is in the singular support means when we restrict the sheaf from a small neighbourhood of the point to a smaller subset along a codirection, the (derived) sections change.

- For a sheaf *F* on X, its singular support SS[∞](*F*) ⊂ T^{*,∞}X encodes the points and codirections where locally the (derived) sections of the sheaf fails to propagate.
- More precisely, a covector at a point is in the singular support means when we restrict the sheaf from a small neighbourhood of the point to a smaller subset along a codirection, the (derived) sections change.

Definition

For a sheaf \mathscr{F} on X, its singular support is the closure of the set of points $(x,\xi) \in T^{*,\infty}X$ such that for a small neighbourhood U of x and a smooth function f where f(x) = 0, $df(x) = \xi$,

$$\Gamma(U,\mathscr{F}) \to \Gamma(f^{-1}((-\infty,0)),\mathscr{F})$$

is not an (quasi-)isomorphism.

★週 ▶ ★ 国 ▶ ★ 国 ▶

 Given a sheaf ℱ on X, its singular support SS[∞](ℱ) is a singular Legendrian or coisotropic/involutive subset (Kashiwara-Schapira).

- Given a sheaf ℱ on X, its singular support SS[∞](ℱ) is a singular Legendrian or coisotropic/involutive subset (Kashiwara-Schapira).
- For a singular Legendrian $\Lambda \subset T^{*,\infty}M$, the front $\pi(\Lambda)$ determines a stratification of M. Sheaves in $Sh_{\Lambda}(M)$ are locally constant on each stratum on the corresponding stratification.

- Given a sheaf ℱ on X, its singular support SS[∞](ℱ) is a singular Legendrian or coisotropic/involutive subset (Kashiwara-Schapira).
- For a singular Legendrian $\Lambda \subset T^{*,\infty}M$, the front $\pi(\Lambda)$ determines a stratification of M. Sheaves in $Sh_{\Lambda}(M)$ are locally constant on each stratum on the corresponding stratification.

• For
$$\mathscr{F} \in Sh_{\Lambda}(M)$$
, at $(x,\xi) \in \Lambda$, the cone

$$\operatorname{Cone}(\Gamma(U,\mathscr{F})\to\Gamma(f^{-1}((-\infty,0)),\mathscr{F}))\neq 0$$

is locally constant along the smooth stratum of Λ . This is called microstalk.

- Given a sheaf ℱ on X, its singular support SS[∞](ℱ) is a singular Legendrian or coisotropic/involutive subset (Kashiwara-Schapira).
- For a singular Legendrian $\Lambda \subset T^{*,\infty}M$, the front $\pi(\Lambda)$ determines a stratification of M. Sheaves in $Sh_{\Lambda}(M)$ are locally constant on each stratum on the corresponding stratification.

• For
$$\mathscr{F} \in Sh_{\Lambda}(M)$$
, at $(x,\xi) \in \Lambda$, the cone

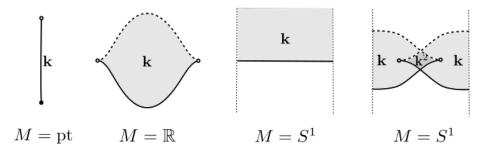
$$\operatorname{Cone}(\Gamma(U,\mathscr{F})\to\Gamma(f^{-1}((-\infty,0)),\mathscr{F}))\neq 0$$

is locally constant along the smooth stratum of Λ . This is called microstalk.

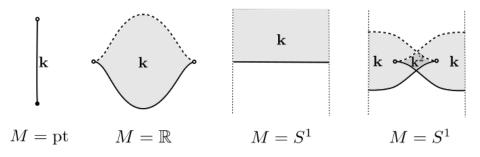
Theorem (Guillermou-Kashiwara-Schapira)

The category $Sh_{\Lambda}(M)$ of sheaves with $SS^{\infty}(\mathscr{F}) \subset \Lambda$ is invariant under Legendrian isotopies.

One can view the 1-jet bundle J¹(M) ≃ T^{*,∞}_{τ>0}(M × ℝ_t), and consider sheaves singularly supported on Legendrians Λ ⊂ J¹(M).



- One can view the 1-jet bundle J¹(M) ≅ T^{*,∞}_{τ>0}(M × ℝ_t), and consider sheaves singularly supported on Legendrians Λ ⊂ J¹(M).
- Given a generating family f : M × F → ℝ (with some control at infinity) for a Legendrian Λ, the fiberwise homology of f⁻¹([0, +∞)) defines a sheaf with singular support on Λ (Viterbo).



The category of sheaves singularly supported on a Legendrian Sh_Λ(M) is closely related to other pseudo-holomorphic curve invariants in symplectic/contact topology.

- The category of sheaves singularly supported on a Legendrian Sh_Λ(M) is closely related to other pseudo-holomorphic curve invariants in symplectic/contact topology.
- Nadler-Zaslow and Nadler shows that the category of all constructible sheaves $Sh^{b}_{con}(M)$ is equivalent to a infinitesimally wrapped Fukaya categories $\mathcal{F}_{\epsilon}(T^{*}M)$.

- The category of sheaves singularly supported on a Legendrian Sh_Λ(M) is closely related to other pseudo-holomorphic curve invariants in symplectic/contact topology.
- Nadler-Zaslow and Nadler shows that the category of all constructible sheaves $Sh^{b}_{con}(M)$ is equivalent to a infinitesimally wrapped Fukaya categories $\mathcal{F}_{\epsilon}(T^{*}M)$.
- For Legendrian links $\Lambda \subset J^1(\mathbb{R})$, Ng-Rutherford-Sivek-Shende-Zaslow shows that a category of "microlocal rank 1" sheaves with singular support on a Legendrian is equivalent to a \mathcal{A}_{∞} -category of augmentations of the Legendrian contact homology with π_1 -coefficients.

 Ganatra-Pardon-Shende shows the equivalence between the compact objects in (unbounded) category of sheaves with singular support Λ and the partially wrapped Fukaya category

 $Sh^{c}_{\Lambda}(M) \simeq \operatorname{Perf} \mathcal{W}(T^{*}M, \Lambda)^{\operatorname{op}}.$

(The correspondence can be generalized to any polarizable Weinstein sectors.)

 Ganatra-Pardon-Shende shows the equivalence between the compact objects in (unbounded) category of sheaves with singular support Λ and the partially wrapped Fukaya category

 $Sh^{c}_{\Lambda}(M) \simeq \operatorname{Perf} \mathcal{W}(T^{*}M, \Lambda)^{\operatorname{op}}.$

(The correspondence can be generalized to any polarizable Weinstein sectors.)

• Legendrian surgery formula (Bourgeios-Ekholm-Eliashberg, Ekholm-Lekili, Ekholm and Asplund-Ekholm) shows the equivalence

$$\operatorname{Perf} \mathcal{W}(X,\Lambda) \simeq \operatorname{Perf} \mathcal{A}_{C_{-*}(\Omega_*\Lambda)}(\Lambda).$$

くぼう くほう くほう

Main results

• Recall the expected Lagrangian cobordism maps between Legendrian contact homologies with loop space coefficients:

$$\Phi_{L}^{*}: \mathcal{A}_{C_{-*}(\Omega_{*}\Lambda_{+})}(\Lambda_{+}) \to \mathcal{A}_{C_{-*}(\Omega_{*}\Lambda_{-})}(\Lambda_{-}) \otimes_{C_{-*}(\Omega_{*}\Lambda_{-})} C_{-*}(\Omega_{*}L),$$

$$\Phi_{L}: \mathcal{A}ug_{+}(\Lambda_{-}) \times_{Loc^{1}(\Lambda_{-})} Loc^{1}(L) \to \mathcal{A}ug_{+}(\Lambda_{+}).$$

< 67 ▶

∃ ► < ∃ ►</p>

Main results

• Recall the expected Lagrangian cobordism maps between Legendrian contact homologies with loop space coefficients:

$$\begin{split} \Phi_{L}^{*} : \mathcal{A}_{C_{-*}(\Omega_{*}\Lambda_{+})}(\Lambda_{+}) &\to \mathcal{A}_{C_{-*}(\Omega_{*}\Lambda_{-})}(\Lambda_{-}) \otimes_{C_{-*}(\Omega_{*}\Lambda_{-})} C_{-*}(\Omega_{*}L), \\ \Phi_{L} : \mathcal{A}ug_{+}(\Lambda_{-}) \times_{Loc^{1}(\Lambda_{-})} Loc^{1}(L) &\to \mathcal{A}ug_{+}(\Lambda_{+}). \end{split}$$

Theorem (L.)

Let $\Lambda_-, \Lambda_+ \subset S^*M$ and L an exact Lagrangian cobordism from Λ_- to Λ_+ . Then there are functors between compact objects of sheaves

$$\Phi_L^*: Sh_{\Lambda_+}^c(M) \to Sh_{\Lambda_-}^c(M) \otimes_{Loc^c(\Lambda_-)} Loc^c(L).$$

and respectively, for proper modules of sheaves (these are constructible sheaves with perfect stalks) a fully faithful functor

$$\Phi_L: Sh^b_{\Lambda_-}(M) \times_{Loc^b(\Lambda_-)} Loc^b(L) \hookrightarrow Sh^b_{\Lambda_+}(M).$$

Remark

The functor $Loc^{b}(L) \rightarrow Loc^{b}(\Lambda_{-})$ is the restriction. The functor $Sh^{b}_{\Lambda_{-}}(M) \rightarrow Loc^{b}(\Lambda_{-})$ is given by computing microstalks (recall that microstalks are locally constant).

Remark

The functor $Loc^{b}(L) \rightarrow Loc^{b}(\Lambda_{-})$ is the restriction. The functor $Sh^{b}_{\Lambda_{-}}(M) \rightarrow Loc^{b}(\Lambda_{-})$ is given by computing microstalks (recall that microstalks are locally constant).

Remark

The functor $Loc^{c}(\Lambda_{-}) \rightarrow Loc^{c}(L)$ is the left adjoint of the restriction and $Loc^{c}(\Lambda_{-}) \rightarrow Sh^{c}_{\Lambda_{-}}(M)$ is the left adjoint of taking microstalks.

Remark

The functor $Loc^{b}(L) \rightarrow Loc^{b}(\Lambda_{-})$ is the restriction. The functor $Sh^{b}_{\Lambda_{-}}(M) \rightarrow Loc^{b}(\Lambda_{-})$ is given by computing microstalks (recall that microstalks are locally constant).

Remark

The functor $Loc^{c}(\Lambda_{-}) \rightarrow Loc^{c}(L)$ is the left adjoint of the restriction and $Loc^{c}(\Lambda_{-}) \rightarrow Sh^{c}_{\Lambda_{-}}(M)$ is the left adjoint of taking microstalks.

Remark

The compact objects of local systems $Loc^{c}(\Lambda_{\pm})$ and $Loc^{c}(L)$ are equivalent to perfect modules over chains on the based loop spaces $C_{-*}(\Omega_*\Lambda_{\pm})$ and $C_{-*}(\Omega_*L)$.

イロト 不得下 イヨト イヨト

• Suppose the microstalks of $\mathscr{F}_{-}, \mathscr{G}_{-} \in Sh_{\Lambda_{-}}(M)$ define constant sheaves with stalks F and G. Gluing with constant sheaves on L, we can get sheaves $\mathscr{F}_{+}, \mathscr{G}_{+} \in Sh_{\Lambda_{+}}(M)$.

- Suppose the microstalks of $\mathscr{F}_{-}, \mathscr{G}_{-} \in Sh_{\Lambda_{-}}(M)$ define constant sheaves with stalks F and G. Gluing with constant sheaves on L, we can get sheaves $\mathscr{F}_{+}, \mathscr{G}_{+} \in Sh_{\Lambda_{+}}(M)$.
- Full faithfulness of the functor means the pullback/pushout square

$$Hom(\mathscr{F}_{-},\mathscr{G}_{-}) \longrightarrow Hom(\mathscr{F}_{+},\mathscr{G}_{+})$$

$$\uparrow \qquad \qquad \uparrow$$

$$Hom(F_{\Lambda_{-}},G_{\Lambda_{-}}) \longrightarrow Hom(F_{L},G_{L})$$

- Suppose the microstalks of $\mathscr{F}_{-}, \mathscr{G}_{-} \in Sh_{\Lambda_{-}}(M)$ define constant sheaves with stalks F and G. Gluing with constant sheaves on L, we can get sheaves $\mathscr{F}_{+}, \mathscr{G}_{+} \in Sh_{\Lambda_{+}}(M)$.
- Full faithfulness of the functor means the pullback/pushout square

$$Hom(\mathscr{F}_{-},\mathscr{G}_{-}) \longrightarrow Hom(\mathscr{F}_{+},\mathscr{G}_{+})$$

$$\uparrow \qquad \qquad \uparrow$$

$$Hom(F_{\Lambda_{-}},G_{\Lambda_{-}}) \longrightarrow Hom(F_{L},G_{L})$$

 The pullback/pushout square implies the relative pair/Mayor-Vitories/ Sabloff long exact sequences that one can deduce using Cthulhu complexes.

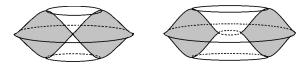


Figure: The Clifford Legendrian torus Λ_{Cliff} (on the left) and the unknotted Legendrian torus Λ_{Unknot} (on the right) in $J^1(\mathbb{R}^2)$.

< 67 ▶

.

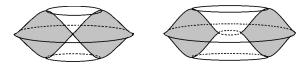


Figure: The Clifford Legendrian torus Λ_{Cliff} (on the left) and the unknotted Legendrian torus Λ_{Unknot} (on the right) in $J^1(\mathbb{R}^2)$.

Theorem (L.)

Let $\Lambda_{g,k}$ be the Legendrian surface with genus g by taking k copies of Λ_{Cliff} and g - k copies of Λ_{Unknot} . Then

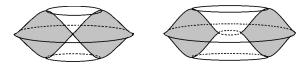


Figure: The Clifford Legendrian torus Λ_{Cliff} (on the left) and the unknotted Legendrian torus Λ_{Unknot} (on the right) in $J^1(\mathbb{R}^2)$.

Theorem (L.)

Let $\Lambda_{g,k}$ be the Legendrian surface with genus g by taking k copies of Λ_{Cliff} and g - k copies of Λ_{Unknot} . Then

 for any k < k', there are no cobordisms L with vanishing Maslov class from Λ_{g,k} to Λ_{g,k'} such that H¹(L) → H¹(Λ_{g,k});

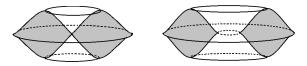


Figure: The Clifford Legendrian torus Λ_{Cliff} (on the left) and the unknotted Legendrian torus Λ_{Unknot} (on the right) in $J^1(\mathbb{R}^2)$.

Theorem (L.)

Let $\Lambda_{g,k}$ be the Legendrian surface with genus g by taking k copies of Λ_{Cliff} and g - k copies of Λ_{Unknot} . Then

- for any k < k', there are no cobordisms L with vanishing Maslov class from Λ_{g,k} to Λ_{g,k'} such that H¹(L) → H¹(Λ_{g,k});
- ② for any $k \ge 1, k' \ge 0$, there are cobordisms L from $\Lambda_{g,k}$ to $\Lambda_{g,k'}$ such that dim coker $(H^1(L) → H^1(\Lambda_{g,k})) \ge 2$.

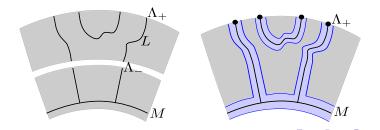
 These Legendrian surfaces Λ_{g,k} are considered Dimitroglou Rizell (ongoing project of Schrader, Shen & Zaslow also consider them). In particular, Dimitroglou Rizell proved that for Λ_{g,k} is fillable if and only if k = 0. Hence there are no cobordisms from Λ_{g,0} to Λ_{g,k'} for k' ≥ 1.

- These Legendrian surfaces Λ_{g,k} are considered Dimitroglou Rizell (ongoing project of Schrader, Shen & Zaslow also consider them). In particular, Dimitroglou Rizell proved that for Λ_{g,k} is fillable if and only if k = 0. Hence there are no cobordisms from Λ_{g,0} to Λ_{g,k'} for k' ≥ 1.
- Obstructions of *H*₁-surjective cobordisms are obtained using sheaves, by counting the number of microlocal rank 1 sheaves (presumably augmentations) over finite fields.

- These Legendrian surfaces Λ_{g,k} are considered Dimitroglou Rizell (ongoing project of Schrader, Shen & Zaslow also consider them). In particular, Dimitroglou Rizell proved that for Λ_{g,k} is fillable if and only if k = 0. Hence there are no cobordisms from Λ_{g,0} to Λ_{g,k'} for k' ≥ 1.
- Obstructions of H_1 -surjective cobordisms are obtained using sheaves, by counting the number of microlocal rank 1 sheaves (presumably augmentations) over finite fields.
- Constructions of H₁-non-surjective cobordisms uses the result of Lagrangian caps by Eliashberg & Murphy.

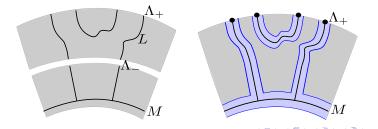
Idea of the proof

Consider the sheaf category Sh_{Λ±}(M) as categories on the Lagrangian skeleton M ∪ ℝ_{>0}Λ_±, of the Weinstein sectors (T^{*}M, Λ_±).



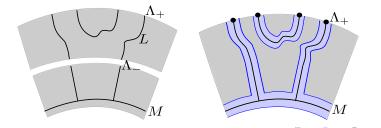
Idea of the proof

- Consider the sheaf category Sh_{Λ±}(M) as categories on the Lagrangian skeleton M ∪ ℝ_{>0}Λ_±, of the Weinstein sectors (T^{*}M, Λ_±).
- The sectorial gluing of (T^*M, Λ_-) and T^*L along a neighbourhood of Λ_- defines a new sector whose stop is Λ_+ . The sheaf category is $Sh_{\Lambda_-}(M) \times_{Loc(\Lambda_-)} Loc(L)$.



Idea of the proof

- Consider the sheaf category Sh_{Λ±}(M) as categories on the Lagrangian skeleton M ∪ ℝ_{>0}Λ_±, of the Weinstein sectors (T^{*}M, Λ_±).
- The sectorial gluing of (T^*M, Λ_-) and T^*L along a neighbourhood of Λ_- defines a new sector whose stop is Λ_+ . The sheaf category is $Sh_{\Lambda_-}(M) \times_{Loc(\Lambda_-)} Loc(L)$.
- Note that $L \hookrightarrow S^*M \times \mathbb{R}$, $(T^*M, \Lambda_-) \cup_{\Lambda_-} T^*L$ is embedded into (T^*M, Λ_+) . The embedding functor maps $Sh_{\Lambda_-}(M) \times_{Loc(\Lambda_-)} Loc(L)$ to $Sh_{\Lambda_+}(M)$.



• Passing to the left adjoint and restrict to the subcategories of compact objects (equivalently, partially wrapped Fukaya categories), this is the Viterbo restriction functor.

- Passing to the left adjoint and restrict to the subcategories of compact objects (equivalently, partially wrapped Fukaya categories), this is the Viterbo restriction functor.
- The embedding functor for sheaf categories on Lagrangian skeleta is essentially constructed by Nadler-Shende. The method is to run the backward Liouville flow to compress the skeleton of the subdomain onto the ambient skeleton.

- Passing to the left adjoint and restrict to the subcategories of compact objects (equivalently, partially wrapped Fukaya categories), this is the Viterbo restriction functor.
- The embedding functor for sheaf categories on Lagrangian skeleta is essentially constructed by Nadler-Shende. The method is to run the backward Liouville flow to compress the skeleton of the subdomain onto the ambient skeleton.
- One technical difficulty for us is to show that composition of embeddings induce compositions of functors.

 For Legendrians in J¹(N), exact Lagrangian cobordisms between them are in ℝ × J¹(N) and have a Legendrian lifting into (ℝ × J¹(N)) × ℝ.

- For Legendrians in J¹(N), exact Lagrangian cobordisms between them are in ℝ × J¹(N) and have a Legendrian lifting into (ℝ × J¹(N)) × ℝ.
- Using the contactomorphism (ℝ × J¹(N)) × ℝ ≅ J¹(N × ℝ_{>0}), exact Lagrangian cobordisms L lift to Legendrian cobordisms with conical ends L̃ (shrinking near 0 and expanding near +∞).

- For Legendrians in J¹(N), exact Lagrangian cobordisms between them are in ℝ × J¹(N) and have a Legendrian lifting into (ℝ × J¹(N)) × ℝ.
- Using the contactomorphism (ℝ × J¹(N)) × ℝ ≅ J¹(N × ℝ_{>0}), exact Lagrangian cobordisms L lift to Legendrian cobordisms with conical ends L̃ (shrinking near 0 and expanding near +∞).
- Another natural approach to build Lagrangian cobordism is to start from a sheaf near N × {0} in Sh_Λ(N × ℝ), extend it to Sh_L(N × ℝ × ℝ_{>0}), and then restrict to N × {+∞} and get Sh_{Λ+}(N × ℝ).

- For Legendrians in J¹(N), exact Lagrangian cobordisms between them are in ℝ × J¹(N) and have a Legendrian lifting into (ℝ × J¹(N)) × ℝ.
- Using the contactomorphism (ℝ × J¹(N)) × ℝ ≅ J¹(N × ℝ_{>0}), exact Lagrangian cobordisms L lift to Legendrian cobordisms with conical ends L̃ (shrinking near 0 and expanding near +∞).
- Another natural approach to build Lagrangian cobordism is to start from a sheaf near N × {0} in Sh_Λ(N × ℝ), extend it to Sh_L(N × ℝ × ℝ_{>0}), and then restrict to N × {+∞} and get Sh_{Λ+}(N × ℝ).
- For Legendrian knots in $J^1(\mathbb{R})$ or $J^1(S^1)$, Pan & Rutherford constructs the diagram (without adding loop space coefficients) for embedded cobordisms

$$\mathcal{A}(\Lambda_{-}) \xrightarrow{\sim} \mathcal{A}(\widetilde{L}) \leftarrow \mathcal{A}(\Lambda_{+}).$$

 As one may expect, a necessary condition to extending the sheaf is that the microlocal monodromy data Loc(Λ₋) extends to Loc(L). Therefore, we hope to construct a functor

$$Sh_{\Lambda_{-}}(N \times \mathbb{R}) \times_{Loc(\Lambda_{-})} Loc(L) \to Sh_{\widetilde{L}}(N \times \mathbb{R} \times \mathbb{R}_{>0})$$

as a one-sided inverse of restriction to the concave end plus taking microlocal monodromy.

 As one may expect, a necessary condition to extending the sheaf is that the microlocal monodromy data Loc(Λ₋) extends to Loc(L). Therefore, we hope to construct a functor

$$Sh_{\Lambda_{-}}(N \times \mathbb{R}) \times_{Loc(\Lambda_{-})} Loc(L) \to Sh_{\widetilde{L}}(N \times \mathbb{R} \times \mathbb{R}_{>0})$$

as a one-sided inverse of restriction to the concave end plus taking microlocal monodromy.

• We expect that on Legendrian contact homologies (with loop space coefficients), there is also a diagram

$$\begin{aligned} \mathcal{A}_{\mathcal{C}_{-*}(\Omega_*\Lambda_-)}(\Lambda_-) \otimes_{\mathcal{C}_{-*}(\Omega_*\Lambda_-)} \mathcal{C}_{-*}(\Omega_*L) &\xrightarrow{\sim} \mathcal{A}_{\mathcal{C}_{-*}(\Omega_*L)}(\widetilde{L}) \\ & \leftarrow \mathcal{A}_{\mathcal{C}_{-*}(\Omega_*\Lambda_+)}(\Lambda_+), \end{aligned}$$

which leads to

$$\operatorname{Mod} \mathcal{A}_{\mathcal{C}_{-*}(\Omega_*\Lambda_-)}(\Lambda_-) \times_{\operatorname{Loc}(\Lambda_-)} \operatorname{Loc}(L) \xleftarrow{\sim} \operatorname{Mod} \mathcal{A}_{\mathcal{C}_{-*}(\Omega_*L)}(\widetilde{L}) \\ \to \operatorname{Mod} \mathcal{A}_{\mathcal{C}_{-*}(\Omega_*\Lambda_+)}(\Lambda_+).$$

• We call the desired construction

$$Sh_{\Lambda_{-}}(N \times \mathbb{R}) \times_{Loc(\Lambda_{-})} Loc(L) \to Sh_{\widetilde{L}}(N \times \mathbb{R} \times \mathbb{R}_{>0})$$

a conditional sheaf quantization, as opposed to classical sheaf quantization of Lagrangians (with Legendrian lifts) of Guillermou and Jin–Treumann who construct

$$\mathsf{Loc}(L) o \mathsf{Sh}_{\widetilde{L}}(\mathsf{N} imes \mathbb{R})$$

for closed exact Lagrangians and exact Lagrangians fillings.

• We call the desired construction

$$Sh_{\Lambda_{-}}(N \times \mathbb{R}) \times_{Loc(\Lambda_{-})} Loc(L) \to Sh_{\widetilde{L}}(N \times \mathbb{R} \times \mathbb{R}_{>0})$$

a conditional sheaf quantization, as opposed to classical sheaf quantization of Lagrangians (with Legendrian lifts) of Guillermou and Jin–Treumann who construct

$$\mathsf{Loc}(L) o \mathsf{Sh}_{\widetilde{L}}(\mathsf{N} imes \mathbb{R})$$

for closed exact Lagrangians and exact Lagrangians fillings.

 Work in progress will (hopefully) show that there is such a conditional sheaf quantization functor similar to Guillermou and Jin–Treumann's construction, and the cobordism functor obtained this way coincides the functor defined by embeddings of Lagrangian skeleta.

Thank you!

æ

イロト イヨト イヨト イヨト